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Two recent studies of diffusion and flow properties of polymers in a melt have 
suggested the problem of finding the average time for m Brownian particles to 
leave a sphere for the first time, given that exited particles can also reenter the 
sphere. We prove that the asymptotic density (as m ~ oe) for the time to first 
emptiness of the sphere for zero-mean Brownian motion is a delta function, 
characterized by the exit time a(m/ln m) 2/D, a being a constant and D being the 
dimension. The presence of a field leaves the delta-function form for the density, 
but changes the time dependence to a In m, with only the constant a depending 
on the dimension. Simulations of the process suggest that the value of m needed 
for the validity of the asymptotic result is orders of magnitude greater than 
1000. 

KEY WORDS:  Brownian motion; random walk occupancies; reptation 
times; first passage times. 

1. I N T R O D U C T I O N  

When a stress is applied to a polymer  melt, one observes a crossover from 
an elastic to a plastic viscosity response. The polymer  physicist is interested 
in determining how the characteristic time r for this crossover to occur 
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scales with the chain mass M. Experimental results suggest that the 
dependence of r on M goes like 

"c~ M 3+~ ( l )  

where the parameter ~ has been found to lie in the interval (0.3, 0.4). There 
are a number of theoretical analyses of this problem, most of which suggest 
that the correct dependence of z on M is of the form given in Eq. (1) with 
~ = 0 ,  in contrast with the experimental results. Doi ~1) and Graessley ~2) 
suggest that the correct dependence of z on M is indeed ~ = 0, and that the 
observed dependence is an intermediate state. More recently, Scher and 
Shlesinger 3) have suggested a theoretical picture that allows for the 
possibility a > 0, although their model does not give an exact value for this 
parameter. This model was reconsidered by Weiss et al., ~4~ whose analysis 
suggests t h a t ,  = 1/3 is indeed the correct theoretical result. 

In the framework of the Scher-Shlesinger model the determination of 
the proper exponent in Eq. (1) depends on the solution of a mathematical 
problem that does not seem to have appeared either in the mathematical or 
physical literature. Its solution, therefore, is of some interest outside of its 
particular application in polymer physics and is the subject of the present 
paper. The problem may be posed in terms of the occupancy of a D-dimen- 
sional sphere, initially populated by m uniformly distributed point 
particles, each of which moves, independently of the others, by a Browfiian 
motion process. At t = 0 the particles are released and allowed to diffuse 
throughout all space, the boundary of the sphere posing no obstacle, so 
that the particles can both exit and reenter the sphere. The problem so 
stated is a variant of the occupancy problem for Brownian motion particles 
first studied by Darling and Kac. (5) 

In the present formulation the number of particles in the sphere at 
time t, n(t) ,  is a random variable. The solution to the physical problem 
suggested by the Scher-Shlesinger model can be shown to be equivalent to 
finding the dependence on n(0)= m of the expected value of the random 
variable tm, defined as 

t,, = in f { tLn ( t )  = 0} (2) 

Weiss e t a / .  (4) have shown by a simple argument that in three dimensions 

( t i n )  ~ m  2/3 (3) 

Based on this inequality, they conjectured that ( tm)  is exactly of the order 
of m 2/3, which can be shown to be equivalent, in the terms of the original 
problem, to z,~ ~ M 1~ in good agreement with the experimentally found 
dependence. 
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In the present paper we will find the exact asymptotic dependence of 
t m) on m, as well as the complete probability distribution in the m = o0 

limit. In particular, it will be shown that for zero-mean Brownian motion 
in D dimensions the scaling behavior of ( t  m )  takes the form 

( t  m ) ~ (m/In m )  2/o, m ~ co (4) 

which satisfies the inequality in Eq. (3). Furthermore, the effect of the 
logarithmic term is probably unobservable experimentally unless 
measurements are made over an unrealistically large range in M. The 
analysis of Section 2 leads to the conclusion that the limiting form of the 
probability density for the random variable t m is a delta function. However, 
the analysis gives almost no clue as to how large m must be in order for the 
resulting form to be a good approximation. In the final section we address 
this question by means of computer simulations of the process. It is 
interesting to note from Eq. (4) that (I m) decreases with increasing dimen- 
sion. This is a consequence of the recurrence properties of the random walk 
considered as a function of dimension. A practical result of this 
phenomenon is that it is easier to do simulations for three-dimensional as 
compared to one-dimensional systems. 

2. A N A L Y S I S  

We consider m particles, which perform independent Brownian 
motions in D space with covariance matrix equal to the identity matrix and 
a drift vector /~. The position of the ith particle at time t is denoted by 
X~(t). Thus, for given Xi(O) = x~, the density of Xi(t ) is 

p(x ,  t) = \ ~ t J  exp - ~  l t x - x i -  t/~dj 2 (5) 

where IJN denotes the Euclidean norm. Most of our attention will be 
focused on the case of zero drift (p = 0), but for contrast we also give some 
results for the case # 4= 0. Throughout  we assume that the initial positions 
x i of the particles are fixed and lie in the unit ball B. Thus 

IIXi(0)H = IIxill ~< 1, 1 ~<i~< m (6) 

It will turn out that our estimates are uniform in the x i under the 
restrictions specified in Eq. (6). Thus, we could equally well choose the xi 
random according to any distribution for which Eq. (6) holds (e.g., the xi 
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could be chosen independent and uniform on B, which is appropriate for 
the original physical problem). We define 

V = VD = volume of the unit ball in D space 

With this definition, we shall prove the following theorem. 

T h e o r e m  1. Assume/t  =0.  Let 

1 

Then 

- -  tm ~ ~o in probability, as m --* 

and for every k >t 1 

/ m "x 2k/o  

(7) 

These results are equivalent to an asymptotic delta-function density for the 
variable t,,. It is interesting to observe that there is no difference between 
transient and recurrent Brownian motion in the present context. 

The behavior of tm for the case with drift is rather different, as shown 
by the next theorem. 

T h e o r e m  2. Assume ~ #0 .  Then 

1 2 
In m tm -~ ~ in probability, as m -~ 

In fact, 

P [2 In m - (D + 3) In In rn] ~ t,. 

<~l~[21nm+(D-2)lnlnm] --+1, 

Also, for k >~ 1 

( t~> //2 In rn'~k 
~ t  II#xll 2 ) ' m--> oo 

as m - - * ~  (9) 

m - - , ~  (8) 
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and 

The proofs are based on consideration of the events 

gi(t) :=  {llX,(t)ll > t} 
: {ith particle is outside B at time t} 

m 
E(t) := (~ Es(t)= {n(O=O } 

i = 1  

Thus, {tm<~T } is the same event as {E(t) occurs for some t<~T}. We 
estimate the probability of the last event by applying Chebyshev's 
inequality to the amount of time during [0, T] for which E(t) occurs. More 
specifically, we define 

p (T)=  [{t~< T: E(t) occurs}[ 

(1"[ denotes Lebesgue measure), and estimate ( p ( T ) )  and 

v a r [ p ( T ) - p ( T / 2 ) ]  

: =  ( [ p ( T )  - p(T I2 ) ]  2 ) - [ ( Q ( T )  - p ( T / 2 )  ) ] 2 

To carry out the details, we must actually consider the slightly more 
general problem, in which B is replaced by a ball of radius r with r not 
necessarily equal to 1. We write B(r) for the ball of radius r, 

E'~(t) = { t lX,(OII  > r} 

and define Er(t), pr(T) in the obvious way. 
We concentrate on the proof of Theorem 1. Lemmas 1-4 all deal with 

the case # = 0. 

L e m m a  1. Let # = 0 and set 

2 = ( l X ]  0/2 
V~ 

For all e > 0 there exists a constant c =  c(e, D) such that, uniformly on 
1/2~<r~<2, mT-D/2)c, T>~c, I[xill ~ 1, 

2 1 
_ T 1 + D/2 (pr(T)) ~ (l --t- 2g) 

pvr- m 

x exp[ -- (1 -- g) flr~ (10) 
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Also, uniformly on 1/2~<r<~2, m T  o/2>~c, T>~c, and for all xi [not 
necessarily satisfying (6)] 

2 1 _ _  _ T l + w2 
<pr(T) - pr(T/2) ) >~ (1 - 2a) fl Dr D m 

x e x p [ -  (1 + e) f lrDmT -D/2] (11) 

Proof. Let I(t, r) denote the indicator function of U(t) .  Then 

<pr(T))  = I(t, r )d t  = <I(t, r ) )  dt 

= P { E r ( t ) } d t =  P{E;(t)}dt 
i = l  

SoT f i  [1 P{HXi(t)1[<..r}]dt 
i = i  

From Eq. (5) with # = 0 we immediately see that for any given e > 0 there 
exists an a = a(e) such that for t>~ a(e) and uniformly in tlxi[I ~< 1 and r <~ 2 

(1 - 8) fir D t - D/2 <~ P {  [ tX,(t ) ] l  ~< r }  < fir D t D/2 ( 1 2 )  

By taking a(8) larger, we may then even write 

exp[ - (l + e) flrD t -D/2 ] ~ P{E~i(t) } 

<...exp[--(1--a)[JrOt-D/2], t >/a(8) (13) 

In fact, the right-hand inequality of Eq. (12), and hence the left-hand 
inequality of Eq. (13), holds uniformly in all xi. 

The remainder of this proof is devoted to the proof of Eq. (10). We 
leave the proof of Eq. (11) to the reader. Given a(e), there exists a 
b = b ( ~ ) > 0  such that P { E ~ ( t ) } ~ e  -b, uniformly in 1/2<~r~<2, Ilxilb ~<1, 
and t <<. a(e). Consequently, for T>~ a(~) 

<pr(T) ) ~< a(e) e x p [ - m b ( g ) ]  

+ e x p [ -  (1 - e ) m f l r D t  -0/2] dt 

The integral here equals 

2 
[(1 --e) t irol z/~ m zip e-~ s -  i -  2/D ds 

1 --  ~) m f l r  o T - D/2 
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and one integration by parts shows that 

f e-~s P ds ~ A-Pe "4, A ~ oo (14) 

Equation (10) follows from this, and the proof of Eq. (11) is similar. | 

As an immediate corollary, we obtain "one-half" of Theorem 1. 

Lamina  2. Le t / t  = 0. For small e > 0 and large m 

P {tm<~(1-5e) c~Z~\l--~--~m ] j<~m-~/2(lnm) -2/~ 

ProoL T a k e r = l - g a n d s e t  

A = A(m, e) = eZ(4D 2 In m)-1 

If at a certain time r there are no particles in B = B(1 ), then the conditional 
probability of there being no particles in B(r) during the whole time 
interval [~, z + A ] is at least 

1 - P{at least one particle has a displacement ~> e during [r, r + A ] } 

2mD ~ ,2/2 ~ 
~> 1 (2~ A) 1/2 /D e ds 

1 

Consequently, 

for large enough m 

1 
If~+3I(t,r)dt n ( r ) = 0  / ~>~A 

We now take for ~ the (Markov) time tin. Then, by the (strong) Markov 
property of the Brownian motion (Ia denotes the indicator function of A) 

(pr(T+A))>- I ( t , r )d t ' l c ,~r  ~ 
\ tm 

1 

Combined with Eq. (10), this yields 

P{tm<~ T} 4 2 (pr(T--~ z~) ) 

lnm 1 
~< C1 - - - -  ( T +  1)1 + o/2 e x p [ -  (1 - e) D+ 1 ~rn(T+ 1)-D/2] 

~2 m 

822/50/5-6-15 
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for some constant C~, when mT-~ and m and T large enough. 
Lemma 2 follows by substituting T =  (1 - 5e) ~D(m/ln m) 2/D. | 

We continue with the proof of the other half of Theorem 1. The 
restriction in Eq. (6) is not necessary for this part. In addition, we only 
need to take r = 1 in Lemmas 3 and 4. Accordingly, we drop the r from the 
notation [e.g., we write I(s) instead of I(s, 1)]. For the upper bound for t,, 
we derive a bound for 

v a r [ p ( r ) - p ( T / 2 ) ]  

rf 1 = var I(s) ds 
L ~ T/2 

= dt [ ( I ( s )  I ( t ) )  - ( I ( s ) ) ( I ( t ) ) ]  
T/2 

(15) 

k e m m a  3. Let /~=0. Then there exist constants d=d(D)  and 
C = C(D) such that for all T/2 >~ 7 >~ d and all xi 

var[p(T) - p(T/2)] <~ 2y (p(T)  - p(T/2))  

+ Cm(Ty) -w2 exp[Cm(Ty) -w2] [ - ( p ( T ) -  p(T/2))]  2 

P r o o f .  We note that 

(I(s) I(t) ) = P(E(s)  and E(t)} 

= f i  [1-P( l IX,(s) l [  <. 1}-P{llXi(t) l l  <~ 1} 
i = 1  

+ P{ItX,(a)ll <~ 1, IlXe(t)ll <<. 1}] 

while 

( I(s) ) ( I(t) ) - -  f i  [1 - P{ llX,(s)ll ~ 1} - P( llXi(t)ll ~ 1) 
i = l  

+ P{ IIX,(s)ll <. 1 } P{ ILXi(t)ll ~ 1 }-] 

For any numbers 0 ~< ai, bi ~< 1 one has 

f i  ( l - a 3 -  f i  ( 1 - b 3 ~ <  ~ [ b , - a i ]  + l-I ( 1 - a j  A bj) 
i = 1  i ~ l  i= i  j # i  

(16) 
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where c + = max(0, c) and a A b = min(a, b). We take 

ai= P{ llXe(s)ll <<. l} + P{ llXi(t)ll <~ 1} 

- P {  IIX~(s)lf ~ 1, IIXe(t)} ~< 1} 

bi = P{ [IY,(s)ll < 1 } + P{ tlX;(t)tl ~ 1 } 

-e{tlXe(s)ll ~< 1} P{ IIxe(t)ll ~< 1} 

Note that the formula for the Gaussian density shows that 

a~, bi ~< [(2~s)-0/2 + (2~t)-D/2] VD = fl[S -D/~ + t D/2] 

and for s < t 

fb~-ail <~ P{Xe(s) ~< 1} dx 
rxfl ~< 1 

x I P { l l X , ( t - s ) - x l [  ~ 1} -P{l lXi( t ) l  I <~ 1}[ 
[ 1 ] ~/2 

~< ( I ) D  V~D i _ ~  j (17) 

Moreover, there exists a constant d =  d(D) such that, for s>~ d, t - s>~ d, 
one has ai, be ~< 1/2, and hence 

I][ ( 1 - a j  A bj)<~2 f i  ( 1 - a j  A bj) 
j~- i  j = l  

~<2 f i  ( 1 - b y ) f i  [ l + 2 ( b j - a j )  +] 
j = l  j = l  

] ~<2 ~1 ( l - b j )  exp ~ 2(bj -a j )  § 
j j 1 

Combining this with Eqs. (16) and (17), we find for our ae, bi, and s>~d, 
t -  s />  d, and a suitable constant C 2 

(I(s) I(t) ) - (I(s) ) (I(t)  ) 

-- (I ( 1 - , j / -  (I 
j=l j=l (1)~ 

~ 2 m  ~ V2D[s(t--s)] -w2 f i  (1-by) 
j ~ l  

<~ C2m[ s( t -  s)] -D/2 exp{ C2m[s( t - s)] -D/2} ( I(s) ) ( I( t ) ) 
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Trivially, we have also for all s, t 

(I(s) I(t)) - ( I ( s ) ) ( I ( t ) )  <~ ( l (s ) )  /x ( I ( t ) )  

so that by Eq. (15) 

var[p( T) - p( T/2 ) ] 

= 2  ds dt [ ( I ( s ) I ( t ) ) -  (I(s))<I(t))]  
T/2 2 

fT fsT+7 <~2 ds dt (I(s))  
7-/2 

ds dt C2m[s(t - s)] -D/2 
OT/2 +y<~t~T 

xexp[C2ms( t_s )  ] D/2 ( I ( s ) ) ( I ( t ) )  

~< 2z (0 (T)  -- p(T/2) ) + 2C2m(T~,/2) z~/2 

x exp[C2m(TT/2) -w2][ (p ( r ) -  p(T/2))] 2 

i . e m m a  4. For  small ~ > 0, large m and integral v 

P tm>~(l+5e) VC~D\l--~m j j ~ m  -v~D/(2+D) 

uniformly in all x~. 

Proof. 

on the set 

By virtue of the Markov property, 

{ ( m  2,o 
P t,~>~(l+5e) wDkl--~m / 

( m )  2/D } 
O<~t<.(l + 5e)(v-1)C%kl--~m j , l <~i<~m 

<~ sup P t m ) (1 + 5g) 0% \l--~m,] J 
Xi 

{tm>(l+5~)(v--1)aD\l--~mJ J 

Bendler et  al, 

(18) 
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It therefore suffices to prove the lemma for v = 1. For v = 1 we take 

( m ~  2/D 
T =  (1 + 5e) ~o \l--~mJ (19) 

Then, by virtue of Chebyshev's inequality, 

/ '  tm>(l+5 l o\iT- m / J 

var [p ( r )  - p(r/2)-I 
<~ [ (p (T)_p(T /2 )  ) ]2 (2O) 

But for the T specified in Eq. (19), the result in Eq. (11) with r =  1 shows 
that 

(p( T) -- p( T/2 ) ) >1 C3m2~(ln m )  -1  --2/D (21) 

for a suitable constant C3 [recall that fl(c~o) D/2 =2/D] .  On the other 
hand. Lemma 3 with T as in Eq. (19) shows that for some constant C4 
(independent of ~, m) 

var [p(T) - p( T/2)] 

<~ 27(p(T) -p (T /2)  ) 

• ~ ~  (22) 

By choosing 

y = m4~/(2 + D) 

we obtain the result of Eq. (18) with v = 1 from Eqs. (20~(22). | 

The proof of Theorem 1 is now easily completed. Equation (7) is 
implied by Lemma 2 and Eq. (18) with v = 1. The result in Eq. (8) follows 
from Eq. (7) plus the uniform (in m) integrability of 

implied by Eq. (18). 
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The proof of Theorem 2 is far easier. We restrict ourselves to a few 
remarks. In this case 

1 exp - ~ l ] x - x i - t # [ ]  2 dx P{ET(t)} = 1 (2rot) D/2 Itxll~, 

and one easily sees that for t>~ 1, r~< 1, and I[xil[ ~ 1 the last integral lies 
between 

r ~ VD e x p ( -  �89 I[#[] 2 _ 2 I1#[1 - 2 )  
and 

r ~ V n exp ( -  �89 I[#1[ 2 + 2 ][/~1] ) 

Consequently, for t greater than some to(#), 

exp [ - 2 m  ( r 2 ~  D/2 2 

= f i  P{Eri(t)} 
i = 1  

= (I(r ,  t ) )  

~<exp I _ 2 m  ( r2 "~ D/2 t \~ -~ /  VD exp ( - ~  [l#l'2- 2 H#l] - 2 ) ]  

In particular, for 

Yl = IIul1-2 [2 In m - (D - 2 )  In In m] 

we have 

Also, with 

21nm D - 2  } 
P tm > ii~l{~ i~-~ In In m 

1 - p{EI (T1)}  -- O[(ln m) -1] ~ 0 

T2 = ]1#][-2[ 2 In m -- (D + 2) In In m] 

we obtain for 1/2 ~< r ~< 2 and some constant C 5 > 0 

(p ' (  T2) ) = f ~  2 ( I(r, t) ) d t=  O[ (ln m) m C5] 

We can now complete the proof of Eq. (9) by the method of Lemma 2. 
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3. SIMULATION RESULTS 

The theoretical results summarized in Theorems 1 and 2 relate to the 
asymptotic distribution of tin. However, the proofs are poorly suited to 
indicate the values of m required to ensure that the asymptotic results give 
useful approximations to the true ones. In particular, one wants to check 
the reliability of the expression in Eq. (4) for (tin>, since this parameter is 
required for the solution of the polymer problem. For  these purposes we 
ran simulations on a variety of cases in from one to six dimensions. 

Although the proofs in Section 2 are for Brownian motion in a 
continuum, they can be modified to make similar predictions for random 
walks on a lattice, the system easiest to simulate. We carried out a number 
of simulations for such systems, for both cases of zero-mean and biased 
random walks. In each case the initial configuration consisted of an equal 
number of random walkers placed on each site in the hypercube [0, 1] D, 
where D is the dimension. The program was set to run until the first step at 
which the hypercube was empty of random walkers. Each run of the 
simulation program consisted of 1000 replications and the results were then 
averaged. In the case of zero-mean random walks we concentrated mainly 
on three or more dimensions, since, because of the recurrence properties of 
random walks in a lower number of dimensions, the simulations would 
have been too prohibitive to run. 

Figure la shows data from our simulation program fitted to the 
equation 

<tin> = a(m/ln m) b (23) 

for values of m from 160 to 1600. The parameters a and b were found by 
the nonlinear curve-fitting program MLAB available at the National 
Institutes of Health. The estimates of a and b are 

a = 3.551 __+ 0.0605 
(24) 

b = 0.659 _+ 0.0034 

where the error terms are the standard errors calculated on the assumption 
that they have a Gaussian distribution. It is evident that the result for the 
exponent b is in the right ballpark with respect to the theoretically 
predicted value b = 2/3. However, if we plot 

< tm >/(m/ln m) 2/3 

as a function of m, as in Fig. lb, there is evidence of a trend which suggests 
that one is not yet in the asymptotic regime at m = 1600 walkers. We also 
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Fig. 1. (a) Simulation results for <tin> for a zero-mean, three-dimensional random walk 
plotted as a function of m. The solid line is the result of fitting the data points to Eq. (23) with 
the parameters given in Eq. (24), (b) Calculated points for ( t , , ) / ( m / l n m )  2/3 for the same 
data. There is some suggestion of a trend in the data. 
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fitted the second moment ( t  2 )  to the function given in Eq. (23), finding 
the parameter estimates 

a 2 = 14.313 + 0.650 

b2 = 1.302 + 0.0088 
(25) 

Again, the estimate of b2 is very close to its theoretically predicted value of 
4/3. However, a graph of (t2m)/(m/lnm) 4/3, not shown here also shows 
evidence of drift as a function of m. Since the theoretically predicted 
probability densities of t m are delta functions, one expects that a2 = a 2. The 
estimated values of the a's given in Eqs. (24) and (25) do not quite obey 
this relation, since a2= 12.61, as opposed to a 2 = 14.313. This suggests that, 
although Eq. (23) gives a good approximation for the m dependence of 
(tin), we are not yet in the asymptotic regime suggested by the results of 
Section 2. 

To pursue this matter a bit further, we plotted the coefficient of 
variation 

C(m) = ( ( t 2 )  )1/2 
\(tin)2 1 (26) 

as a function of m. This is shown in Fig. 2 together with a fitted curve of 
the form 

C(m) ,~ 1.1629/(ln m) ~176 (27) 

Suppose that we characterize the asymptotic regime by C(m),,~O.01, the 
asymptotically predicted value being C(oo)=0.  The fitted curve whose 
parameters are given in Eq. (27) then predicts that m = 4 • 1081. While this 
is perhaps an outrageous extrapolation, it does suggest that the regime in 
which the asymptotic theory is fully valid occurs for values of m that are at 
least many orders of magnitude greater than the maximum of 1600 used in 
our simulations. 

In addition to our analyses made of data from simulations in three 
dimensions, we also examined data from simulations from four- to six- 
dimensional random walks. As an example of the results found, in the case 
of six dimensions the fit of Eq. (23) to the data leads to parameter 
estimates 

a6 = 4.444 +_ 0.064 
(28) 

b 6 = 0.384 _+ 0.003 

The theoretical value of b is 0.333, which is quite far from the results found 
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Fig. 2. Data points for the coefficient of variation C(m) = ( ( t 2 ) / ( t ~ )  2 -  1) m as a function 
of m for a zero-mean, three-dimensional random walk. The solid line is the fitted curve 
specified in Eq. (27). 

from our simulation, although the data are in good agreement with an 
equation of the form of Eq. (23), as can be seen from Fig. 3. 

Finally, we also examined the case of a random walk in a field, in one 
dimension. The probability of stepping one lattice site to the right was 
chosen equal to 0.8 and that to the left equal to 0.2. In this case we 
examined the following form for ( t  m): 

( t , , , )  = c(ln m) a (29) 

The significant bias in the transition probabilities allowed us to work with 
numbers of random walkers up to 4000, the quality of the fit being 
indicated by the curve plotted in Fig. 4, The fit is quite good, but the 
parameter estimates of c and d are 

c = 2.380 + 0.055 
(30) 

d =  1.183___0.011 
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Fig. 3. Simulation results for (tin) for a zero-mean, six-dimensional random walk plotted as 
a function of m and compared to the fitted curve whose form is given in Eq. (23). The 
parameters used are those in Eq. (28). 

The theoretical value of d is 1, suggesting, as in the zero-mean case, that 
much larger values of m are needed to ensure the validity of the asymptotic 
theory, although the theoretical form for ( t in)  seems to give a quite 
satisfactory fit to the data. We also plotted the coefficient of variation in 
this case as a function of m, fitting the data to 

C(m) ,~ 1.29/(ln m) 1"19 (31) 

The quality of the fit is the same as that in Fig. 2, and so is not shown here. 
Equation (31) suggests that the number of random walkers necessary to 
ensure that C(m) = 0.01 is 6 • 1025, which, as before, is orders of magnitude 
larger than the numbers we were constrained to use. 

A few remarks are in order about our results in the context of the 
original polymer problem that motivated the present research. Since the 
only parameter appearing in the theory of �9 in Eq. (1) is ( t , , ) ,  and since 
this parameter is well approximated by Eq. (23), we conclude that the 
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Fig. 4. Simulation results for ( t , , )  for a random walk in one dimension in which the 
probability of a single step transition to the right is 0.8 and that to the left is 0.2. The results 

�9 are fitted to the function ( t , , )  = c(ln m) a, where the parameters c and d are found in Eq. (30). 
Notice that the parameter d differs considerably from 1. 

theory  is in g o o d  accord  with exper iment .  The exponent ,  as we have seen, 
is close to the p red ic ted  value of 2/3 for numbers  of r a n d o m  walkers  
a r o u n d  1000, which is a physica l ly  reasonab le  number  for these k inds  of  
po lymer  models .  Thus,  one finds tha t  the p a r a m e t e r  c~ in Eq. (1) is close to 
1/3. I t  wou ld  be interes t ing to ca r ry  out  measurements  over  a sufficiently 
large range in M to see whether  the logar i thmic  te rm is indeed present  in r, 
which would  increase one 's  confidence in the bas ic  theory  to  a cons iderable  
degree. 
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